• Assessing Metal-Metal Multiple Bonds in Cr—Cr, Mo—Mo, and W—W Compounds and a Hypothetical U—U Compound: A Quantum Chemical Study Comparing DFT and Multireference Methods
    G. Li Manni, A.L. Dzubak, A. Mulla, D.W. Brogden, J.F. Berry and L. Gagliardi
    Chemistry - A European Journal, 18 (6) (2012), p1737-1749
    DOI:10.1002/chem.201103096 | unige:18373 | Abstract | Article PDF
To gain insights into the trends in metal–metal multiple bonding among the Group 6 elements, density functional theory has been employed in combination with multiconfigurational methods (CASSCF and CASPT2) to investigate a selection of bimetallic, multiply bonded compounds. For the compound [Ar-MM-Ar] (Ar=2,6-(C6H5)2-C6H3, M=Cr, Mo, W) the effect of the Ar ligand on the M2 core has been compared with the analogous [Ph-MM-Ph] (Ph=phenyl, M=Cr, Mo, W) compounds. A set of [M2(dpa)4] (dpa=2,2′-dipyridylamide, M=Cr, Mo, W, U) compounds has also been investigated. All of the compounds studied here show important multiconfigurational behavior. For the Mo2 and W2 compounds, the σ2π4δ2 configuration dominates the ground-state wavefunction, contributing at least 75 %. The Cr2 compounds show a more nuanced electronic structure, with many configurations contributing to the ground state. For the Cr, Mo, and W compounds the electronic absorption spectra have been studied, combining density functional theory and multireference methods to make absorption feature assignments. In all cases, the main features observed in the visible spectra may be assigned as charge-transfer bands. For all compounds investigated the Mayer bond order (MBO) and the effective bond order (EBO) were calculated by density functional theory and CASSCF methods, respectively. The MBO and EBO values share a similar trend toward higher values at shorter normalized metal–metal bond lengths.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024